WILEY

Breast Cancer Epidemiology and Clinical Considerations in the Asia-Pacific Region

Comprehensive insights into the incidence, risk factor detection, and preventive measures

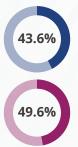
Epidemiology of breast cancer

Breast cancer¹

- Occurs when a mutation causes uncontrollable growth of breast cells
- Broadly classified into different types depending on the affected cell
- Often originates in the ducts or lobules and may metastasise through blood vessels and the lymphatic system

Global breast cancer incidence and mortality

In 2018² >2.1 million new cases ~626,000 deaths



~2.3 million new cases ~685,000 deaths

Affects 1 in 20 globally and 1 in 8 in high-income countries⁴

Varying global burden of breast cancer among countries

Prevalence of breast cancer in the Asia-Pacific region²⁻⁴

• The incidence of breast cancer is increasing in Asia

>43.6% of new breast cancer cases reported worldwide in 2018

 Close to half of the 2.3 million cases diagnosed in 2020 were from Asia
 >49.6% of breast cancer deaths worldwide

- Australia had lower incidence (0.9%) and mortality rates (0.5%) (as of 2020)
- High-income countries have higher breast cancer incidence and lower mortality rates
- Disease burden is lower than that in South Asia

Global age-specific incidence rates for breast cancer³

- Low for females <25 years
- Increased drastically in women >25 years

Ethnic or racial differences in biology³ The peak age of breast cancer diagnosis in a few Asian and African countries was >10 years earlier than in European or American countries Comparison of global age-standardised incidence rates (ASIR)^{3,4}

As of 2020, Asia has the lowest ASIR (36.8 per 100,000 women), while North America has the highest (89.4)

Developed countries such as Belgium, Australia, Denmark, the USA, Italy, and the UK have higher incidence rates

Developing countries such as Iran, Mexico, China, Costa Rica, and Cameroon have lower incidence rates

Age-specific incidence rates³

- In South Korea, a significant increase was seen in the 70–79 years age group (AAPC* 8.4%, p < 0.001)
- In China and the UK, an increase was observed in the 60–69 age group (AAPC 3.8%, *p* < 0.001 vs 1.7%, *p* < 0.001)
- A significant decrease was seen in the 50–59 years age group (AAPC 1.8%, p < 0.001) in the USA
- *AAPC: Average annual per cent change

Genetic⁵

Breast cancer 1 (BRCA1) and 2 (BRCA2)

- Most common breast cancer susceptibility genes
- Involved in the repair of DNA

Other susceptibility genes associated with breast cancer⁵

- CDH1: Cadherin-1
- *PTEN*: Phosphatase and tensin homolog
- *TK11*: Serine/threonine kinase 11
- *P53*: Tumour protein p53

- CHEK2: Checkpoint kinase 2
- ATM: Ataxia telangiectasia mutated
- NBN: Nibrin
- *PALB2*: Partner and localizer of BRCA2

Single-nucleotide polymorphisms (SNPs)⁵

- The individual risks due to SNPs are low
- The combined effect of multiple SNPs referred to as polygenic risk scores (PRS) can be significant
- SNP-based PRS can be used together with other risk factors to predict the incidence of breast cancer

Non-genetic⁵

Age of menarche and menopause

- Increased relative risk (RR) at an early age of menarche
- Older age in menopause is linked to an increased RR

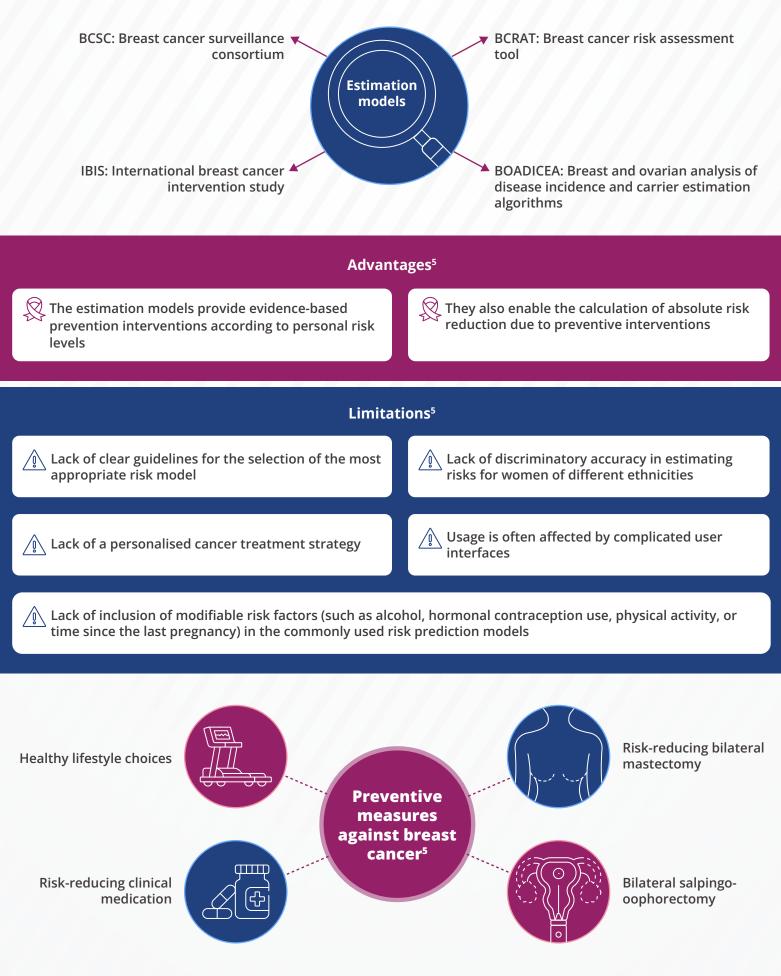
Childbearing

- Giving birth to fewer children increases the risk
- Having children prior to the age of 35 provides long-term protection against breast cancer

Breastfeeding

• RR reduction by ~4% for every 12 months of breastfeeding

Mammographic density (MD)


- MD is an independent indicator of risk for breast cancer
- MD can be developed as a preventive biomarker

Lifestyle-linked factors

• Obesity, physical inactivity, and alcohol consumption are associated with an increased risk of breast cancer

Prediction of breast cancer risk

The accurate estimation of a woman's breast cancer risk is important⁵

Why early detection of breast cancer is imperative^{4,6}

Early cancer detection and diagnosis, followed by treatment, increase the chances of survival by manifold⁶

ommon screening approaches⁴

Breast self-examination, clinical breast examination, magnetic resonance imaging, ultrasound, and mammography

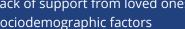
The gold standard for breast screening is mammography, a low-dose X-ray of the breast

Mammography⁴

- High sensitivity (77% to 95%) and high specificity (94% to 97%) in detecting breast abnormalities
- In women with dense breasts, sensitivity is alarmingly low
- Ethnicity and age can affect the accuracy of mammography screening
- Mammographic evaluation in Asian women is difficult due to higher breast density

Downsides of mammography screening⁴

Barriers to breast cancer screening in Asia⁴


• Low accuracy levels

Overtreatment of

small tumours

- Missed cancers
- False positive findings Overdiagnosis Lead time bias

- Personal beliefs
- Fatalism
- Religion
- Fear of pain and embarrassment
- Lack of support from loved ones
- Sociodemographic factors
- Financial constraints

Common challenges to early diagnosis⁶

- · Lack of understanding of the biology and behaviour of early disease
- · Determining the risk of developing cancer
- Identifying and validating biomarkers of early cancer
- Technological barriers such as the lack of powerful molecular analytical, imaging, and histopathological methods
- Evaluating early detection approaches

Sustained and interdisciplinary research efforts, funding programs, and business initiatives by pharmaceutical industries can help address the challenges in the early diagnosis of cancer⁶

Clinical considerations for the Asia-Pacific region⁴

- Tailored screening for Asian populations
- Ensuring high-quality screening examination
- Improving the cost-effectiveness of mammography · Using genetic and non-genetic risk factors for a comprehensive risk classification

Key messages

Early diagnosis of breast cancer can significantly improve patient survival

Stratified screening can help identify high-risk patients and overcome barriers to early detection of the disease

References:

- 1. Breast Cancer. Factsheet. (2024). World Health Organization.
- Park, Y. H., Senkus-Konefka, E., Im, S. A., Pentheroudakis, G., Saji, S., Gupta, S., ... & Douillard, J. Y. (2020). Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with early breast cancer: A KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS. Annals of Oncology, 31(4), 451–469.
 Lei, S., Zheng, R., Zhang, S., Wang, S., Chen, R., Sun, K., ... & Wei, W. (2021). Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from
- 2000 to 2020. Cancer Communications, 41(11), 1183-1194.
- 4. Lim, Y. X., Lim, Z. L., Ho, P. J., & Li, J. (2022). Breast cancer in Asia: incidence, mortality, early detection, mammography programs, and risk-based screening initiatives. Cancers, 14(17), 4218.
- 5. Britt, K. L., Cuzick, J., & Phillips, K. A. (2020). Key steps for effective breast cancer prevention. Nature Reviews Cancer, 20(8), 417–436.
- 6. Crosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., ... & Balasubramanian, S. (2022). Early detection of cancer. Science, 375(6586), eaay9040.

Published by **IIFY**

Visit https://breastcancer.apac.knowledgehub.wiley.com for additional resources

